

STRUCTURAL ANALYSIS

Fastening of a Clapboard

with LIGNOLOC® wooden nails

Calculation performed by:
BIGA | Structural Engineers
Prof. Dr. Ing. Patrik Aondio
An der Halde 3 | 87448 Waltenhofen | Germany
Phone: +49 (0) 8379 / 880 900-3
Email: aondio@biga-bauingenieure.de
Website: biga-bauingenieure.de

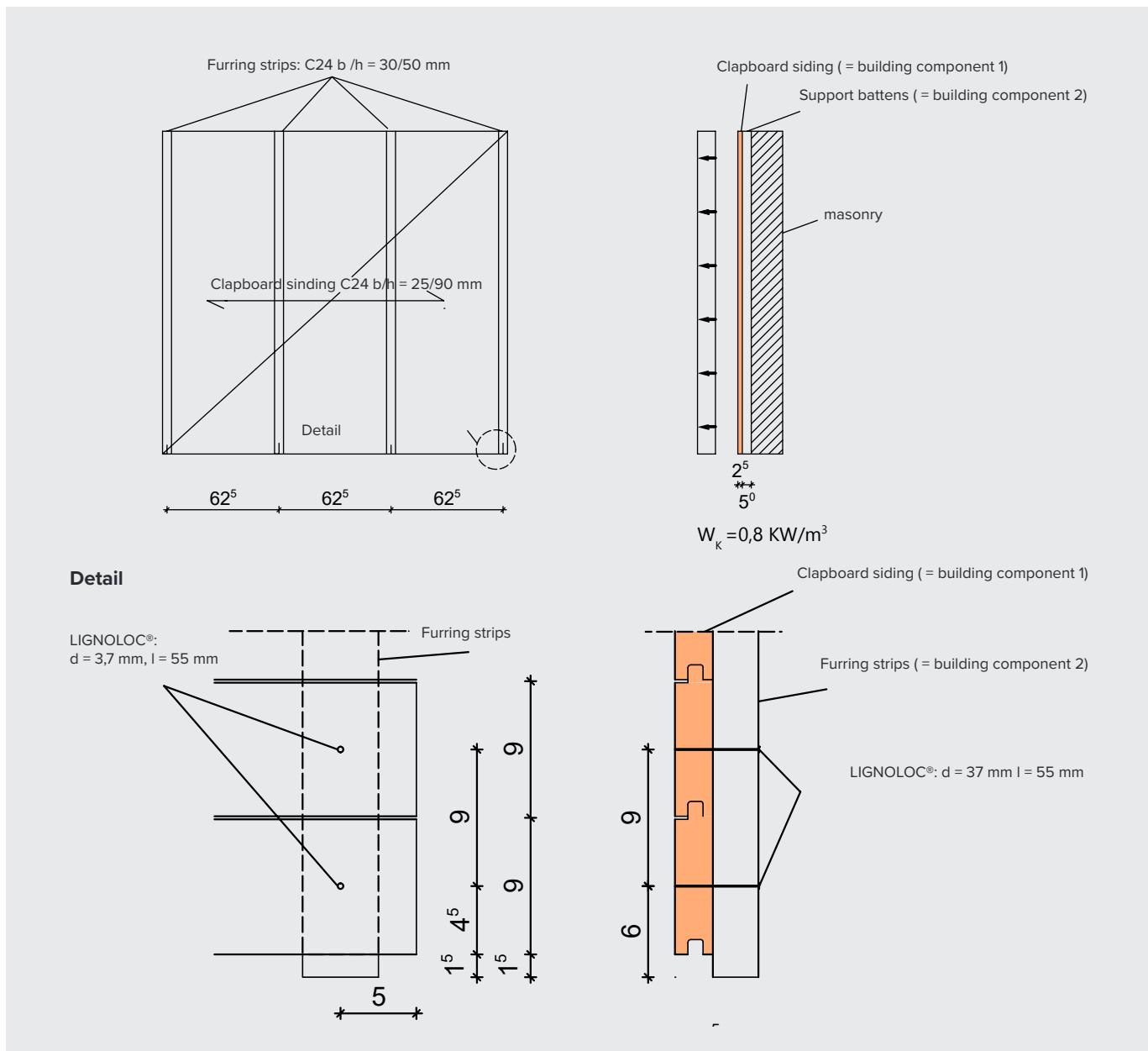
01 // System 3

02 // Verification of the Minimum Spacings 4

03 // Loads per Nail 4

04 // Verification of Permanent Load 5

05 // Verification of permanent and temporary loads 6


01 // System

A clapboard siding installed on a structural framework made of spruce timber is considered. Based on the local conditions, the façade can be assigned to Service Class 2.

Support battens: Softwood C24, $b_{Ri} \times h_{Ri} = 30 \times 50 \text{ mm}^2$, $e = 625\text{mm}$, NKL 2

Clapboard siding: Softwood C24, $b_s \times h_s = 25 \times 90 \text{ mm}^2$, NKL 2

Connection: LIGNOLOC® wooden nail, $d=3,7\text{mm}$, $l=55 \text{ mm}$, $a_1 = 90 \text{ mm}$

An analysis of the entire building resulted in a governing characteristic wind uplift load of 0.8 kN/m^2 . For the clapboard siding, an average unit weight of $\rho_{\text{mean, Timber}} = 4,2 \text{ kN/m}^2$ can be assumed.

02 // Verification of the Minimum Spacings

Fasteners according to ETA-23/0041, analogous to non-pre-drilled nails in DIN EN 1995-1-1:2010-12

Are the minimum spacings in the clapboard siding (Component 1) met?

table 8.2

$$a_{1,\min,VH} = (5 + 5 \cdot (\cos\alpha)) \cdot d = (5 + 5 \cdot (\cos 90^\circ)) \cdot 3,7 = 18,5 \text{ mm} \leq 625 \text{ mm} \checkmark$$

$$a_{3,c,\min,VH} = 10 \cdot d = 10 \cdot 3,7 = 37,0 \text{ mm} \leq 50 \text{ mm} \checkmark$$

$$a_{4,t,\min,VH} = (5 + 2 \cdot \sin\alpha) \cdot d = (5 + 2 \cdot (\sin 90^\circ)) \cdot 3,7 = 25,9 \text{ mm} \leq 45 \text{ mm} \checkmark$$

$$a_{4,c,\min,VH} = 5 \cdot d = 5 \cdot 3,7 = 18,5 \text{ mm} \leq 45 \text{ mm} \checkmark$$

Are the minimum spacings in the furring strips (Component 2) met?

table 8.2

$$a_{1,\min,VH} = (5 + 5 \cdot (\cos\alpha)) \cdot d = (5 + 5 \cdot (\cos 0^\circ)) \cdot 3,7 = 37 \text{ mm} \leq 90 \text{ mm} \checkmark$$

$$a_{3,t,\min,VH} = (10 + 5 \cdot (\cos\alpha)) \cdot d = (10 + 5 \cdot (\cos 0^\circ)) \cdot 3,7 = 55 \text{ mm} \leq 60 \text{ mm} \checkmark$$

$$a_{4,c,\min,VH} = 5 \cdot d = 5 \cdot 3,7 = 18,5 \text{ mm} \leq 25 \text{ mm} \checkmark$$

03 // Loads per Nail

From permanent load

$$F_{V,G,k} = \rho_{\text{mean, Timber}} \cdot b_S \cdot h_S \cdot e = 4,2 \frac{\text{kN}}{\text{m}^3} \cdot 0,025 \text{m} \cdot 0,090 \text{m} \cdot 0,625 \text{m} = 5,9 \cdot 10^{-3} \text{kN} = 5,9 \text{ N}$$

Design level

$$F_{V,G,d} = F_{V,G,k} \cdot \gamma_G = 5,9 \text{ N} \cdot 1,35 = 8,0 \text{ N}$$

Wind load

$$F_{ax,W,k} = \underbrace{1,25}_{\text{continuity factor}} \cdot w_k \cdot h_S \cdot e = 1,25 \cdot 0,8 \frac{\text{kN}}{\text{m}^2} \cdot 0,090 \text{ m} \cdot 0,625 \text{ m} = 0,056 \text{ kN} = 56,2 \text{ N}$$

At the design level

$$F_{ax,W,d} = F_{ax,W,k} \cdot \gamma_Q = 56,2 \text{ N} \cdot 1,5 = 84,3 \text{ N}$$

04 // Verification of Permanent Load

Embedding strength of solid timber – nail head side ($\alpha_1=90^\circ$)

according to ETA

$$f_{h,1,k} = \frac{0,082 \cdot \rho_{k,1} \cdot d^{-0,3}}{(1,35 + 0,015 \cdot d) \cdot \sin^2 \alpha_1 + \cos^2 \alpha_1}$$

$$f_{h,1,k} = \frac{0,082 \cdot 350 \text{ kg/m}^3 \cdot 3,7^{-0,3}}{(1,35 + 0,015 \cdot 3,7) \cdot (\sin 90^\circ)^2 + (\cos 90^\circ)^2} = 13,79 \text{ N/mm}^2$$

nach DIN EN 1995-1-1, Tab. 3.1

$$k_{mod,1} = 0,6$$

$$f_{h,1,d} = \frac{f_{h,1,k} \cdot k_{mod,1}}{\gamma_{M,1}} = \frac{13,79 \cdot 0,6}{1,3} = 6,37 \text{ N/mm}^2$$

Embedding strength of solid timber – nail tip side ($\alpha_2 = 0^\circ$)

according to ETA

$$f_{h,2,k} = \frac{0,082 \cdot \rho_{k,2} \cdot d^{-0,3}}{(1,35 + 0,015 \cdot d) \cdot \sin^2 \alpha_2 + \cos^2 \alpha_2} =$$

$$f_{h,2,k} = \frac{0,082 \cdot 350 \text{ kg/m}^3 \cdot 3,7^{-0,3}}{(1,35 + 0,015 \cdot 3,7) \cdot (\sin 0^\circ)^2 + (\cos 0^\circ)^2} = 19,38 \text{ N/mm}^2$$

according to DIN EN 1995-1-1, Tab. 3.1

$$k_{mod,2} = 0,6$$

$$f_{h,2,d} = \frac{f_{h,2,k} \cdot k_{mod,2}}{\gamma_{M,2}} = \frac{19,38 \cdot 0,6}{1,3} = 8,95 \text{ N/mm}^2$$

$$\beta = \frac{f_{h,2,d}}{f_{h,1,d}} = \frac{8,95 \text{ N/mm}^2}{6,37 \text{ N/mm}^2} = 1,41$$

Design value of the yield moment

ETA-table B.1

$$M_{u,k} = 1200 \text{ Nmm}$$

$$M_{u,d} = M_{u,k} \cdot \frac{k_{mod,M}}{\gamma_M} = 1200 \text{ Nmm} \cdot \frac{0,85}{1,3} = 323 \text{ Nmm}$$

Required minimum embedment depth 1 – nail head side

according to ETA

$$t_{1,req} = \left(\sqrt{\frac{\beta}{1+\beta}} + 1 \right) \cdot \sqrt{\frac{4 \cdot M_{u,d}}{0,75 \cdot f_{h,1,d} \cdot d}} = \left(\sqrt{\frac{1,41}{1+1,41}} + 1 \right) \cdot \sqrt{\frac{4 \cdot 323 \text{ Nmm}}{0,75 \cdot 6,37 \cdot \frac{\text{N}}{\text{mm}^2} \cdot 3,7}} = 15,09 \text{ mm}$$

$$t_{1,req} = 15,09 \text{ mm} \leq t_{1,vorh} = 25,0 \text{ mm} \checkmark$$

Required minimum embedment depth 2 – nail tip side

according to ETA

$$t_{2,req} = \left(\sqrt{\frac{1}{1+\beta}} + 1 \right) \cdot \sqrt{\frac{4 \cdot M_{u,d}}{0,75 \cdot f_{h,2,d} \cdot d}} = \left(\sqrt{\frac{1}{1+1,41}} + 1 \right) \cdot \sqrt{\frac{4 \cdot 323 \text{ Nmm}}{0,75 \cdot 8,95 \frac{\text{N}}{\text{mm}^2} \cdot 3,7}} = 11,87 \text{ mm}$$

$$t_{2,req} = 11,87 \text{ mm} \leq t_{2,vorh} = 30,0 \text{ mm} \checkmark$$

Design of the load-bearing capacity in shear per nail

$$F_{v,Rd,Na} = \sqrt{\frac{2 \cdot \beta}{1+\beta}} \cdot \sqrt{1,5 \cdot M_{u,d} \cdot f_{h,1,d} \cdot d}$$

$$F_{v,Rd,Na} = \sqrt{\frac{2 \cdot 1,41}{1+1,41}} \cdot \sqrt{1,5 \cdot 323 \text{ Nmm} \cdot 6,37 \text{ N/mm}^2 \cdot 3,7 \text{ mm}}$$

$$F_{v,Rd,Na} = 115,59 \text{ N}$$

Verification

$$\eta = \frac{F_{v,G,d}}{F_{v,Rd,Na}} = \frac{8,0 \text{ N}}{115,59 \text{ N}} = 0,06 < 1,0 \left(\text{utilization ratio 6\%} \right)$$

05 // Verification of permanent and temporary loads

Embedding strength of solid timber – nail head side ($\alpha_1 = 90^\circ$)

according to ETA

$$f_{h,1,k} = \frac{0,082 \cdot \rho_{k,1} \cdot d^{-0,3}}{(1,35 + 0,015 \cdot d) \cdot \sin^2 \alpha_1 + \cos^2 \alpha_1}$$

$$f_{h,1,k} = \frac{0,082 \cdot 350 \text{ kg/m}^3 \cdot 3,7^{-0,3}}{(1,35 + 0,015 \cdot 3,7) \cdot (\sin 90^\circ)^2 + (\cos 90^\circ)^2} = 13,79 \text{ N/mm}^2$$

$$k_{mod,1} = 1,0 \quad \text{Load duration class: medium, between short-term and very short-term}$$

according to
DIN EN 1995-1-1, Tab. 3.1

$$f_{h,1,d} = \frac{f_{h,1,k} \cdot k_{mod,1}}{\gamma_{M,1}} = \frac{13,79 \cdot 1,0}{1,3} = 10,61 \text{ N/mm}^2$$

Required minimum embedment depth 2 – Side of the nail tip ($\alpha_2=0^\circ$) according to ETA

$$f_{h,2,k} = \frac{0,082 \cdot \rho_{k,2} \cdot d^{-0,3}}{(1,35 + 0,015 \cdot d) \cdot \sin^2 \alpha_2 + \cos^2 \alpha_2} =$$

$$f_{h,2,k} = \frac{0,082 \cdot 350 \text{ kg/m}^3 \cdot 3,7^{-0,3}}{(1,35 + 0,015 \cdot 3,7) \cdot (\sin 0^\circ)^2 + (\cos 0^\circ)^2} = 19,38 \text{ N/mm}^2$$

$$k_{mod,2} = 1,0 \quad \text{(Load duration class: medium, between short-term and very short-term)}$$

according to DIN EN 1995-1-1,
Tab. 3.1

$$f_{h,2,d} = \frac{f_{h,2,k} \cdot k_{mod,2}}{\gamma_{M,2}} = \frac{19,38 \cdot 1,0}{1,3} = 14,91 \text{ N/mm}^2$$

$$\beta = \frac{f_{h,2,d}}{f_{h,1,d}} = \frac{14,91 \text{ N/mm}^2}{10,61 \text{ N/mm}^2} = 1,41$$

Design value of the yield moment

ETA-table B.1

$$M_{u,k} = 1200 \text{ Nmm}$$

To remain on the safe side, the load duration class “short-term” is assumed for the wind action.

$$M_{u,d} = M_{u,k} \cdot \frac{k_{mod,M}}{\gamma_M} = 1200 \text{ Nmm} \cdot \frac{0,60}{1,3} = 554 \text{ Nmm}$$

Required minimum embedment depth 1 – nail head side

according to ETA

$$t_{1,req} = \left(\sqrt{\frac{\beta}{1+\beta}} + 1 \right) \cdot \sqrt{\frac{4 \cdot M_{u,d}}{0,75 \cdot f_{h,1,d} \cdot d}} = \left(\sqrt{\frac{1,41}{1+1,41}} + 1 \right) \cdot \sqrt{\frac{4 \cdot 554 \text{ Nmm}}{0,75 \cdot 10,61 \cdot \frac{\text{N}}{\text{mm}^2} \cdot 3,7}} = 15,31 \text{ mm}$$

$$t_{1,req} = 15,31 \text{ mm} \leq t_{1,vorh} = 25,0 \text{ mm} \checkmark$$

Required minimum embedment depth 2 – nail tip side

according to ETA

$$t_{2,req} = \left(\sqrt{\frac{1}{1+\beta}} + 1 \right) \cdot \sqrt{\frac{4 \cdot M_{u,d}}{0,75 \cdot f_{h,2,d} \cdot d}} = \left(\sqrt{\frac{1}{1+1,41}} + 1 \right) \cdot \sqrt{\frac{4 \cdot 554 \text{ Nmm}}{0,75 \cdot 14,91 \frac{\text{N}}{\text{mm}^2} \cdot 3,7}} = 12,04 \text{ mm}$$

$$t_{2,req} = 12,04 \text{ mm} \leq t_{2,vorh} = 30,0 \text{ mm} \checkmark$$

Design of the load-bearing capacity in shear per nail

$$F_{v,Rd,Na} = \sqrt{\frac{2 \cdot \beta}{1+\beta}} \cdot \sqrt{1,5 \cdot M_{u,d} \cdot f_{h,1,d} \cdot d}$$

$$F_{v,Rd,Na} = \sqrt{\frac{2 \cdot 1,41}{1+1,41}} \cdot \sqrt{1,5 \cdot 554 \text{ Nmm} \cdot 10,61 \text{ N/mm}^2 \cdot 3,7 \text{ mm}}$$

$$F_{v,Rd,Na} = 195,21 \text{ N}$$

Determination of the withdrawal capacity

Verification of the minimum penetration depth in component 1 – nail head side:

$$t_{pen,min,1} = 4 \cdot d = 4 \cdot 3,7 \text{ mm} = 14,8 \text{ mm}$$

$$t_{pen,min,1} = 14,8 \text{ mm} \leq t_{pen,vorh,1} = 25,0 \text{ mm} \checkmark$$

Verification of the minimum penetration depth in component 2 – nail tip side:

$$t_{pen,min,2} = 8 \cdot d = 8 \cdot 3,7 \text{ mm} = 29,6 \text{ mm}$$

$$t_{pen,min,2} = 29,6 \text{ mm} \leq t_{pen,vorh,2} = 30,0 \text{ mm} \checkmark$$

Withdrawal capacity on the nail head side – component 1

$$F_{ax,Rd,1} = \min \left\{ \frac{1}{\frac{t_{pen,1}}{8 \cdot d}} \right\} \cdot \frac{f_{ax,k} \cdot k_{mod,ax}}{\gamma_{M,1}} \cdot d \cdot t_{pen,1} \cdot \left(\frac{\rho_{k,1}}{350} \right)^{0,8} =$$

$$F_{ax,Rd,1} = \min \left\{ \frac{1}{\frac{25}{8 \cdot 3,7}} \right\} \cdot \frac{7,0 \frac{N}{mm^2} \cdot 0,5}{1,3} \cdot 3,7 \cdot 25 \text{ mm} \cdot \left(\frac{350}{350} \right)^{0,8} =$$

$$F_{ax,Rd,1} = 0,84 \cdot \frac{7,0 \frac{N}{mm^2} \cdot 0,5}{1,3} \cdot 3,7 \cdot 25 \text{ mm} \cdot 1,0 = 210 \text{ N}$$

Withdrawal capacity on the nail tip side – component 2

$$F_{ax,Rd,2} = \min \left\{ \frac{1}{\frac{t_{pen,2}}{8 \cdot d}} \right\} \cdot \frac{f_{ax,k} \cdot k_{mod,ax}}{\gamma_{M,2}} \cdot d \cdot t_{pen,2} \cdot \left(\frac{\rho_{k,2}}{350} \right)^{0,8} =$$

$$F_{ax,Rd,2} = \min \left\{ \frac{1}{\frac{30}{8 \cdot 3,7}} \right\} \cdot \frac{7,0 \frac{N}{mm^2} \cdot 0,5}{1,3} \cdot 3,7 \cdot 30 \text{ mm} \cdot \left(\frac{350}{350} \right)^{0,8} =$$

$$F_{ax,Rd,2} = 1,0 \cdot \frac{7,0 \frac{N}{mm^2} \cdot 0,5}{1,3} \cdot 3,7 \cdot 30 \text{ mm} \cdot 1,0 = 299 \text{ N}$$

Withdrawal resistance:

$$F_{ax,Rd} = \min \left\{ \frac{F_{ax,Rd,1}}{F_{ax,Rd,2}} \right\} = \min \left\{ \frac{210 \text{ N}}{299 \text{ N}} \right\} = 210 \text{ N}$$

Verification (combined verification)

$$\eta = \frac{F_{V,G,d}}{F_{v,Rd,Na}} + \frac{F_{ax,W,d}}{F_{ax,Rd}} = \frac{8,0 \text{ N}}{195,21 \text{ N}} + \frac{84,3 \text{ N}}{210 \text{ N}} = 0,44 < 1,0 \left(\text{utilization ratio 44\%} \right)$$

BECK

BECK Fastening
Raimund-Beck-Strasse 1
5270 Mauerkirchen | Austria
T +43 7724 2111-0
sales.int@beck-fastening.com
BECK-FASTENING.COM

